Chemical Composition of Thoracic Dust at Workplaces During Cement Production

Author:

Weinbruch Stephan12,Scerri Mark3ORCID,Eduard Wijnand1,Thomassen Yngvar1,Nordby Karl-Christian1,Berlinger Balázs1,Dahl Kari1,Friisk Grete1,Romanova Natalya1,Notø Hilde1

Affiliation:

1. National Institute of Occupational Health , Gydas vei 8, N-0363 Oslo , Norway

2. Institute of Applied Geosciences, Technical University Darmstadt , Schnittspahnstr. 9, D-64287 Darmstadt , Germany

3. Environmental Management & Planning Division, Institute of Earth Systems, University of Malta , Msida MSD2080 , Malta

Abstract

Abstract Objectives Cement belongs to the most used building materials. Clinker is the major constituent of cement, and it is believed that the strong increase of pH after hydration of clinker minerals is responsible for the observed decline in lung function of cement production workers. Information on clinker exposure at workplaces in the cement production industry is scarse. The aims of this study are to determine the chemical composition of thoracic dust and to quantify workplace exposure to clinker in cement production. Methods The elemental composition of 1250 personal thoracic samples collected at workplaces in 15 plants located in 8 different countries (Estonia, Greece, Italy, Norway, Sweden, Switzerland, Spain, Turkey) was determined by inductively coupled plasma optical emission spectrometry (ICP-OES), separately for water- and acid-soluble fraction. Positive matrix factorization (PMF) was used to determine the contribution of different sources to the dust composition and to quantify the clinker content in 1227 of the thoracic samples. In addition, 107 material samples were analysed to facilitate interpretation of the factors obtained by PMF. Results The median thoracic mass concentrations varied for individual plants between 0.28 and 3.5 mg/m3. PMF with 8 water-soluble and 10 insoluble (i.e., acid-soluble) element concentrations yielded a five-factor solution: Ca, K, Na sulfates; silicates; insoluble clinker; soluble clinker-rich; and soluble Ca-rich. The clinker content of the samples was calculated as sum of the insoluble clinker and soluble clinker-rich factors. The median clinker fraction of all samples was 45% (range 0–95%), and varied between 20% and 70% for individual plants. Discussion The 5-factor solution of PMF was selected on the basis of several mathematical parameters recommended in the literature as well as the mineralogical interpretability of the factors. In addition, interpretation of the factors was supported by the measured apparent solubility of Al, K, Si, Fe, and to a lesser extent Ca in material samples. The total clinker content obtained in the present study is considerably lower than estimates based on the Ca concentrations in a sample, and somewhat lower than estimates based on Si concentrations after selective leaching with a methanol/maleic acid mixture. The clinker abundance in workplace dust of one plant investigated in the present contribution was also estimated in a recent study by electron microscopy, and the good agreement between both studies gives confidence in the results of PMF. Conclusions The clinker fraction in personal thoracic samples could be quantified from the chemical composition by positive matrix factorization. Our results allow for further epidemiological analyses of health effects in the cement production industry. As these estimates are more accurate for clinker exposure than aerosol mass, stronger associations with respiratory effects are expected if clinker is the main cause of these effects.

Funder

European Cement Association

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3