Potential Influence of Skin Hydration and Transepidermal Water Loss on the Dermal Transfer and Loading of Elemental Metallic Lead

Author:

Sahmel Jennifer12ORCID,Ramachandran Gurumurthy23ORCID

Affiliation:

1. Division of Environmental Health Sciences, University of Minnesota School of Public Health , Minneapolis, MN 55455 , USA

2. Insight Exposure and Risk Sciences , 1790 38th Street, Boulder, CO 80301 , USA

3. Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University , Baltimore, MD 21205 , USA

Abstract

Abstract The factors influencing transfer of chemicals or other contaminants to and from the surface of the skin are often poorly understood. Previous research has indicated that environmental conditions, skin hydration, and repeated contacts may all influence the quantity of dermal transfer. The aim of this analysis was to evaluate the influence of skin hydration and condition on quantitative chemical transfer in a series of systematic measurements using human subjects for 5 and 10 repeated contacts. Elemental metallic lead was used as the exemplar test substance for the measurements collected. Skin hydration index (HI) was assessed using a corneometer and skin condition and barrier function were measured using an open-chamber transepidermal water loss (TEWL) instrument. Results indicated that for the palmar surface of the index finger where sampling was conducted, the relative hydration level of the skin was higher for males (n = 6) versus females (n = 4) (mean HI = 4.0 for females; mean HI = 5.5 for males) but this difference was not statistically significant. Overall, the skin hydration level was not significantly associated with dermal loading for either the 5 contact scenario (Pearson correlation = 0.27; R2 = 0.07; P = 0.45) or the 10 contact scenario (Pearson correlation = 0.26; R2 = 0.07; P = 0.47). When the results were stratified by higher versus lower hydration levels (HI = 1–5 versus HI = 5–10), for the higher hydration levels (HI = 5–10; mean HI = 7), there was a moderately positive association between skin hydration and loading, but this was not statistically significant for either the 5 contact scenario (Pearson correlation = 0.75; R2 = 0.56; P = 0.15) or the 10 contact scenario (Pearson correlation = 0.6; R2 = 0.36; P = 0.28). No clear relationship was observed between the lower hydration levels (HI = 1–5) and dermal loading. For the palmar index finger, there was a negative correlation between the TEWL measurements and both the 5 contact (Pearson correlation = −0.45; R2 = 0.2; P = 0.19) and 10 contact (Pearson correlation = −0.3; R2 = 0.09; P = 0.4) scenarios, but this was not statistically significant. The results of this study are consistent with the limited results of other analyses, which have suggested that there may be nuances with respect to the effects of skin hydration on the quantitative dermal transfer to and from the skin, although additional data are needed to better understand these potential differences.

Funder

Midwest Center for Occupational Health and Safety

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3