Characterization of the Emissions and Crystalline Silica Content of Airborne Dust Generated from Grinding Natural and Engineered Stones

Author:

Thompson Drew1,Qi Chaolong1ORCID

Affiliation:

1. Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering , Cincinnati, OH 45226 , USA

Abstract

Abstract In this study, we systematically characterized the airborne dust generated from grinding engineered and natural stone products using a laboratory testing system designed and operated to collect representative respirable dust samples. Four stone samples tested included two engineered stones consisting of crystalline silica in a polyester resin matrix (formulations differed with Stones A having up to 90wt% crystalline silica and Stone B up to 50wt% crystalline silica), an engineered stone consisting of recycled glass in a cement matrix (Stone C), and a granite. Aerosol samples were collected by respirable dust samplers, total dust samplers, and a Micro-Orifice Uniform Deposit Impactor. Aerosol samples were analyzed by gravimetric analysis and x-ray diffraction to determine dust generation rates, crystalline silica generation rates, and crystalline silica content. Additionally, bulk dust settled on the floor of the testing system was analyzed for crystalline silica content. Real-time particle size distributions were measured using an Aerodynamic Particle Sizer. All stone types generated similar trimodal lognormal number-weighted particle size distributions during grinding with the most prominent mode at an aerodynamic diameter of about 2.0-2.3 μm, suggesting dust formation from grinding different stones is similar. Bulk dust from Stone C contained no crystalline silica. Bulk dust from Stone A, Stone B, and granite contained 60, 23, and 30wt% crystalline silica, respectively. In Stones A and B, the cristobalite form of crystalline silica was more plentiful than the quartz form. Only the quartz form was detected in granite. The bulk dust, respirable dust, and total dust for each stone had comparable amounts of crystalline silica, suggesting that crystalline silica content in the bulk dust could be representative of that in respirable dust generated during grinding. Granite generated more dust per unit volume of material removed than the engineered stones, which all had similar normalized dust generation rates. Stone A had the highest normalized generation rates of crystalline silica, followed by granite, Stone B, and Stone C (no crystalline silica), which likely leads to the same trend of respirable crystalline silica (RCS) exposure when working with these different stones. Manufacturing and adoption of engineered stone products with formulations such as Stone B or Stone C could potentially lower or eliminate RCS exposure risks. Combining all the effects of dust generation rate, size-dependent silica content, and respirable fraction, the highest normalized generation rate of RCS consistently occurs at 3.2-5.6 µm for all the stones containing crystalline silica. Therefore, removing particles in this size range near the generation sources should be prioritized when developing engineering control measures.

Funder

Centers for Disease Control and Prevention

National Institute for Occupational Safety and Health

Oak Ridge Institute for Science and Education

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3