A Quantitative Validation of the Control Banding Nanotool

Author:

Zalk David M1,Paik Samuel Y1,Chase Wesley D1

Affiliation:

1. Lawrence Livermore National Laboratory, Livermore, CA, USA

Abstract

Abstract Eleven years (by publication) years after the development and application of the control banding (CB) Nanotool for the qualitative assessment and control of engineered nanoparticles (ENP), there remains no quantitative gold standard to serve as an alternative to the qualitative assessment. Many CB models have been developed during the years subsequent to the initial development of the CB Nanotool and the literature continues to blossom with comparisons and applications of these various tools; however, these developments have hitherto been made in the absence of validating and verifying their effectiveness using existing, albeit limited, quantitative methods. This paper reviews the existing literature on the CB Nanotool to evaluate its effectiveness in a variety of settings and presents a summary of qualitative and quantitative information from its application in a broad range of ENP handling activities performed in two different research institutions. A total of 28 ENP activities were assessed using the CB Nanotool (Version 2.0). Due to the lack of guidance on a single exposure assessment methodology, a combination of real-time monitoring, filter analysis, and microscopic analysis was used to assess various quantitative metrics, including mass concentration, particle number concentration, and particle speciation. All the results indicated that the control outcomes from the CB Nanotool qualitative assessment were sufficient to prevent workers from being exposed to ENP at levels beyond established exposure limits or background levels. These data represent an independent quantitative validation of CB Nanotool risk level outcomes and give further credence to the use of the CB Nanotool to effectively control worker exposures in the absence of quantitative air monitoring results.

Funder

U.S. Department of Energy

Lawrence Livermore National Laboratory

Lawrence Livermore National Security

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Reference58 articles.

1. Control banding approaches for nanomaterials;Brouwer;Ann Occup Hyg,2012

2. Pulmonary applications and toxicity of engineered nanoparticles;Card;Am J Physiol Lung Cell Mol Physiol,2008

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3