Performance Comparison of Four Portable FTIR Instruments for Direct-on-Filter Measurement of Respirable Crystalline Silica

Author:

Ashley Elizabeth L1,Cauda Emanuele1,Chubb Lauren G1,Tuchman Donald P1,Rubinstein Elaine N1

Affiliation:

1. Office of Mine Safety and Health Research, Pittsburgh Mining Research Division (PMRD), National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Pittsburgh, PA, USA

Abstract

Abstract Exposure to dusts containing respirable crystalline silica is a recognized hazard affecting various occupational groups such as miners. Inhalation of respirable crystalline silica can lead to silicosis, which is a potentially fatal lung disease. Currently, miners’ exposure to respirable crystalline silica is assessed by collecting filter samples that are sent for laboratory analysis. A more timely field-based silica monitoring method using direct-on-filter (DoF) analysis is being developed by researchers at the National Institute for Occupational Safety and Health (NIOSH) to provide mine operators with the option to evaluate miners’ exposure at the mine. This field-based silica monitoring technique involves the use of portable Fourier transform infrared (FTIR) instruments. As a step in the development of this new analytical technique, four commercially available portable FTIR instruments were evaluated for their ability to provide reproducible measurements from filter samples containing respirable crystalline silica. Reported testing indicates that measurements varied within ±4.1% between instruments for filter samples that contained high-purity respirable crystalline silica. Measurements varied within ±3.0% between instruments for filter samples that contained varying mineral composition. Filter samples were repeatedly analyzed by the same instrument over short and extended periods of time, and mean coefficients of variation did not exceed ±1.6 and ±2.4%, respectively. Mixed model analysis revealed that there was no statistically significant (P < 0.05) change in average measurements made over an extended period of time for all instruments. Results suggest that each of the four FTIR instruments evaluated in this study were able to generate precise and reproducible DoF analysis results of respirable dust samples.

Funder

National Institute for Occupational Safety and Health

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Reference31 articles.

1. Limit of blank, limit of detection and limit of quantitation;Armbruster;Clin Biochem Rev,2008

2. Signal-to-noise ratio, signal processing, and spectral information in the instrumental analysis laboratory;Blitz;J Chem Educ,2002

3. Promoting early exposure monitoring for respirable crystalline silica: taking the laboratory to the mine site;Cauda;J Occup Environ Hyg,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3