Construction and Calibration of an Exposure Matrix for the Welding Trades

Author:

Galarneau Jean-Michel1ORCID

Affiliation:

1. Division of Preventive Medicine, University of Alberta, 8303-112 Street, Edmonton, Alberta T6G 2T4, Canada

Abstract

Abstract Objectives This study aimed to construct, validate, and calibrate an exposure matrix that would be used to estimate personal airborne exposures to total dust, manganese, nickel, chromium, and aluminum for welders in the WHAT-ME cohort. The Workers’ Health in Apprenticeship Trades: metal and electrical (WHAT-ME) study established a cohort of women and men welders to investigate pregnancy and other birth outcomes along with health issues related to welding. To construct the matrix, data were extracted and assembled from the literature and analyzed to produce exposure models. Final models derived in this first step were then compared with external data gathered under controlled conditions and later combined to form calibrated models. Methods A systematic literature search was conducted to identify and extract all relevant data from published journal articles appearing in selected databases. Summary data were extracted that represented airborne personal exposures to total, inhalable and respirable dusts along with metal concentrations for manganese, nickel, chromium, and aluminum. Mathematical exposure models were derived and a validation of the models undertaken in the second part of this study. The most common welding combinations of welding process, base metal, and consumable (welding scenarios) for welders taking part in the WHAT-ME study were identified through detailed welding questionnaires completed by WHAT-ME participants. These were replicated under controlled conditions with a welder equipped with a personal air sampling pump to gather samples. A gravimetric analysis was performed to determine total dust exposures followed by a metals analysis using ICP-MS. Predictions were made for these welding scenarios replicated in the laboratory, using the exposure models derived in the literature and the predictions correlated against the results from the welding laboratory replications. Results The systematic review yielded 92 published articles from which 737 summary statistics were extracted representing 4620 personal samples of total dust, 4762 of manganese, 4679 of nickel, 3972 of chromium, and 676 of aluminum. The highest total dust exposures were for flux-core arc welding (FCAW) while the highest manganese producing base metal was mild steel. For nickel, the highest emissions were from high alloyed steel using gas metal arc welding while chromium emissions were most abundant in manual metal arc welding on stainless steel. Aluminum exposures were highest in FCAW welding and on aluminum as a base metal. The replication of 21 scenarios covered more than 90% of the scenarios in the WHAT-ME study. Sixty-one laboratory welding sessions took place with a minimum of two replications per scenario. Spearman rank correlations between predicted exposures and mean measured exposures yielded a rho of 0.93 (P < 0.001) for total dust, 0.87 (P < 0.001) for manganese, 0.54 (P < 0.024) for nickel, 0.43 (P = 0.055) for chromium, and 0.29 (P = 0.210) for aluminum. Conclusions This study produced the first welding exposure matrix composed of process, base metal, and consumable. This model was able to predict exposures observed under controlled conditions and could be used by any researcher to estimate welding exposures in a wide range of occupational contexts.

Funder

Canadian Institutes of Health Research

Canadian Standards Association

The Government of Alberta OHS Futures

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Reference25 articles.

1. Health effects of welding;Antonini;Crit Rev Toxicol,2003

2. Pulmonary effects of welding fumes: review of worker and experimental animal studies;Antonini;Am J Ind Med,2003

3. Limit of blank, limit of detection and limit of quantitation;Armbruster;Clin Biochem Rev,2008

4. NIOSH manual of analytical methods 5th edition and harmonization of occupational exposure monitoring;Ashley;Gefahrst Reinhalt Luft,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3