Review of welding fume emission factor development

Author:

Quecke Emily1ORCID,Quemerais Bernadette2,Hashisho Zaher1

Affiliation:

1. Faculty of Engineering, Department of Civil and Environmental Engineering, University of Alberta , Edmonton, AB, T6R 2W2 , Canada

2. Faculty of Medicine and Dentistry, Department of Medicine, University of Alberta , Edmonton, AB, T6R 2R3 , Canada

Abstract

Abstract The fumes created from welding activities present a unique occupational hazard. Due to the complex processes which govern fume formation, the characterization of welding fumes is difficult. Emission factors (EFs) are one method to characterize fume formation from different processes and scenarios. This paper reviews the development of EFs and similar metrics both historic research which contributed to the US EPAs AP-42 summary of welding emission factors released in 1995, and more recent research initiatives. Through a critical analysis of what research has been done in this area and the strength of the emission factors developed, this paper proposes a set of recommendations for future research. Research on emission factors for gas metal arc welding (GMAW) is the most complete amongst the different types of electric arc welding. Despite it being generally known that flux core arc welding (FCAW) creates significant fume emissions compared to some of the other processes few studies have looked at FCAW since the AP-42. Shielded metal arc welding is also under-researched particularly in terms of metal-specific emission factors. The influence of different welding activity parameters such as welding location, speed or current is well defined for GMAW but requires more attention for other welding processes. Further effort towards compiling and comparing available emission factor data of quality, evaluating the available data statistically and organizing this data in a practically useful way is required. The availability of reliable emission factors will allow the development or improvement of exposure modelling tools that would be very useful for exposure assessment when monitoring is not practical.s

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3