Assessment of the Oxidative Potential and Oxidative Burden from Occupational Exposures to Particulate Matter

Author:

Fleck Alan da Silveira12,Debia Maximilien12,Ryan Patrick Eddy12,Couture Caroline12,Traub Alison3,Evans Greg J3,Suarthana Eva45,Smargiassi Audrey126

Affiliation:

1. Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada

2. Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada

3. Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto Engineering, Toronto, Ontario, Canada

4. Research Institute of McGill University Health Center, Montreal, Quebec, Canada

5. Centre de Recherche de l’Hôpital du Sacré-Cœur de Montréal (CRHSCM), 5400 Boul Gouin O, Montreal, Quebec, Canada

6. Institut National de Sante Publique du Québec (INSPQ), 190 Boul Crémazie E, Montreal, Quebec, Canada

Abstract

Abstract Oxidative potential (OP) is a toxicologically relevant metric that integrates features like mass concentration and chemical composition of particulate matter (PM). Although it has been extensively explored as a metric for the characterization of environmental particles, this is still an underexplored application in the occupational field. This study aimed to estimate the OP of particles in two occupational settings from a construction trades school. This characterization also includes the comparison between activities, sampling strategies, and size fractions. Particulate mass concentrations (PM4-Personal, PM4-Area, and PM2.5-Area) and number concentrations were measured during three weeks of welding and construction/bricklaying activities. The OP was assessed by the ascorbate assay (OPAA) using a synthetic respiratory tract lining fluid (RTLF), while the oxidative burden (OBAA) was determined by multiplying the OPAA values with PM concentrations. Median (25th–75th percentiles) of PM mass and number concentrations were 900 (672–1730) µg m–3 and 128 000 (78 000–169 000) particles cm–3 for welding, and 432 (345–530) µg m–3 and 2800 (1700–4400) particles cm–3 for construction. Welding particles, especially from the first week of activities, were also associated with higher redox activity (OPAA: 3.3 (2.3–4.6) ρmol min–1 µg–1; OBAA: 1750 (893–4560) ρmol min–1 m–3) compared to the construction site (OPAA: 1.4 (1.0–1.8) ρmol min–1 µg–1; OBAA: 486 (341–695) ρmol min–1 m–3). The OPAA was independent of the sampling strategy or size fraction. However, driven by the higher PM concentrations, the OBAA from personal samples was higher compared to area samples in the welding shop, suggesting an influence of the sampling strategy on PM concentrations and OBAA. These results demonstrate that important levels of OPAA can be found in occupational settings, especially during welding activities. Furthermore, the OBAA found in both workplaces largely exceeded the levels found in environmental studies. Therefore, measures of OP and OB could be further explored as metrics for exposure assessment to occupational PM, as well as for associations with cardiorespiratory outcomes in future occupational epidemiological studies.

Funder

Institut de recherche Robert-Sauvé en santé et sécurité du travail

Fonds de recherche du Québec – Nature et technologies

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3