The Development and Calibration of a Mechanistic Asbestos Removal Exposure Assessment Tool (AREAT)

Author:

Franken Remy1ORCID,Tromp Peter2,van de Hoef Wouter3,Jadoenathmisier Trishala1,Schinkel Jody1

Affiliation:

1. Department of Risk Analysis for Products in Development (RAPID), TNO, Utrecht, The Netherlands

2. Department of Environmental Modeling, Sensing and Analysis (EMSA), TNO, Utrecht, The Netherlands

3. Environmental Epidemiology Division, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands

Abstract

Abstract Exposure to asbestos fibres is linked to numerous adverse health effects and the use of asbestos is currently banned in many countries. Still, asbestos applications are present in numerous residential and professional/industrial buildings or installations which need to be removed. Exposure measurements give good insight in exposure levels on the basis of which the required control regime is determined to ensure that workers are protected against adverse health effects. However, it is a costly and time-consuming process to measure all situations as working conditions and materials may vary greatly. Therefore, the mechanistic model ‘Asbestos Removal Exposure Assessment Tool (AREAT)’ was developed to estimate exposure to respirable asbestos fibres released during asbestos abatement processes where measurements are not available. In such instances tailored control regimes can be implemented based on modelled exposure levels. The mechanistic model was developed using scientific literature, an in-house asbestos abatement dataset, and knowledge with regard to previously developed models. Several exposure determinants such as the substance emission potential, activity emission potential, control measures, and dilution in air were identified and specific modifiers were developed for each category. Through an algorithm, AREAT calculates a dimensionless score based on the model inputs. The model was calibrated using a statistical model on an extensive measurement dataset containing a broad variety of exposure scenarios. This statistical model enabled the translation of dimensionless AREAT scores to actual estimated fibre concentrations in fibres m−3. In total, 370 personal inhalation exposure measurements from 71 different studies were used for calibration of AREAT. Of these measurements, in 191 cases (52%) with microscopic analysis (all asbestos fibre analyses were conducted with scanning electron microscopy/energy dispersive X-ray analysis in accordance with ISO 14966) no fibres were detected and the limit of detection values(LODs) were given. To assess the influence of the large number of measurements with exposures below LOD values on the performance of the model, calibrations were performed on the total dataset and the selection of data excluding measurements below LOD. The AREAT model correlated well with the datasets, with a Pearson correlation of 0.73 and 0.8 and Spearman rank correlation of 0.56 and 0.8. The model was fitted to estimate a typical exposure value [i.e. geometric mean (GM) exposures], but it is recommended to use a more conservative worst case higher percentile (for example the 90th percentile; which adds a factor of 17.3 based on the model uncertainty on the GM estimate), to account for variability in the measurements and uncertainty in model estimates. This work has shown the development and calibration of a mechanistic model, capable of estimating asbestos fibre exposures during asbestos abatement processes. The AREAT model will be implemented as a lower tier exposure model in a risk assessment tool used within the Netherlands to plan abatement processes and to develop control strategies.

Funder

Dutch Ministry of Social Affairs and Employment

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Reference36 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3