Application of the Environmental Relative Moldiness Index in Indoor Marijuana Grow Operations

Author:

Root Kyle S1,Magzamen Sheryl12,Sharp Julia L3,Reynolds Stephen J14,Van Dyke Michael4,Schaeffer Joshua W14

Affiliation:

1. Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA

2. Department of Epidemiology, Colorado School of Public Health, Denver, CO, USA

3. Department of Statistics, Colorado State University, Fort Collins, CO, USA

4. Department of Environmental and Occupational Health, Colorado School of Public Health, Denver, CO, USA

Abstract

Abstract Objectives Indoor marijuana grow operations (IMGOs) are increasing due to legalization of recreational and medicinal cannabis at the state level. However, the potential exposures of IMGO workers have not been well studied. Mold exposure has been identified as a major occupational health concern. Mold-specific quantitative polymerase chain reaction (MSQPCR) can provide quantitative exposure data for fungi at the species level. The purpose of this study was to characterize the airborne fungal burden using MSQPCR and to evaluate the applicability of an airborne Environmental Relative Moldiness Index (ERMI) in IMGOs. Methods Air and dust samples were collected inside and outside the IMGOs and then analyzed via MSQPCR. These data were then used to calculate IMGO-specific ERMI scores. Culturable air samples were collected on agar plates and analyzed via microscopy. Differences were evaluated between indoor and outdoor concentrations, as well as between air and dust samples. The agreement between MSQPCR and culture-based methods was also evaluated. Results Based on the geometric means for non-zero values of each fungal species across all IMGOs, the total airborne concentration was approximately 9100 spore equivalent (SE) m−3 with an interquartile range (IQR) of 222 SE m−3. The indoor/outdoor ratio of geometric means across all 36 species per IMGO ranged from 0.4 to 6.2. Significantly higher indoor concentrations of fungal species, including Aspergillus spp., were observed. An average airborne ERMI score of 7 (IQR = 7.6) indicated a relatively high burden of mold across a majority of operations. The ERMI scores were driven by the high concentrations of Group 1 species with a mean of 15.8 and an IQR of 13. There were 63 additional species identified in the culturable air samples not included in the ERMI. Conclusions High concentrations of airborne fungi were identified in IMGOs. Our evaluation of the ERMI based on MSQPCR as a rapid diagnostic and risk assessment tool for industrial hygienists in the IMGO setting is equivocal. ERMI did not identify all relevant fungal species associated with this specific occupational environment. We identified several issues with using the ERMI calculation. At this time, the catalog of fungal species needs to optimized for the occupational setting to ensure adequate coverage, especially for those species expected to be found in this burgeoning industry. Further research is necessary to elucidate the link between the ERMI score of airborne samples, worker exposure and health effects in grows to generate an acceptable index score for use in occupational exposure assessments.

Funder

Bureau of Justice Assistance

National Institute for Occupational Safety and Health

Mountain and Plains Education and Research Center

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3