Evaluation of Stoffenmanager® and ART for Estimating Occupational Inhalation Exposures to Volatile Liquids

Author:

Lee Eun Gyung1

Affiliation:

1. Field Studies Branch, Respiratory Health Division, National Institute for Occupational Safety and Health , 1095 Willowdale Road, Morgantown, WV , USA

Abstract

AbstractIn practice, workers often handle the same chemical(s) of interest under different control measures (e.g. local ventilation, enclosed system) during a full shift. Stoffenmanager® allows users to predict either task-based or full-shift exposures. However, most previous studies evaluated the tool by comparing task-based exposures with measured exposures. Also, limited evaluation studies of the Advanced REACH Tool (ART) with the Bayesian approach (ART+B) are available, requiring additional evaluation studies. The performance of Stoffenmanager® and ART with and without the Bayesian approach was evaluated with measured full-shift exposures to volatile liquids in terms of accuracy, precision, and conservatism. Forty-two exposure situation scenarios (including 251 exposures), developed based on job tasks and chemicals handled during tasks from workplaces, were used to generate full-shift estimates. The estimates were then compared with measured exposures using various comparison methods. Overall, Stoffenmanager® appeared to be the most accurate among the testing tools, while ART+B was the most precise. The percentage of measured exposures exceeding the tools’ 90th percentile estimates (%M>T) demonstrated that Stoffenmanager® (16%M>T) and ART+B (13%M>T) were more conservative than ART (41%M>T). When the 90% upper confidence limit of the 90th percentile estimate was considered, the level of conservatism changed from low (41%M>T) to medium (17%M>T) for ART and from medium (13%M>T) to high (0.8%M>T) for ART+B. The findings of this study indicate that no single tool would work for all ESs. Thus, it is recommended that users select a tool based on the performance results of three components (i.e. accuracy, precision, and conservatism), not depending on one or two components. The strength of this study is that the required tools’ input parameters were obtained during the sample collection to minimize assumptions for many input parameters. In addition, unlike other previous studies, multiple subtasks, which happen often in workplaces, were incorporated in this study. Nevertheless, the present study did not cover all activities listed in the tools and was limited to volatile liquids, suggesting further studies cover other exposure categories (e.g. solid, metal) and diverse activities.

Funder

National Institute for Occupational Safety and Health

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Reference35 articles.

1. The validity and applicability of using a generic exposure assessment model for occupational exposure to nano-objects and their aggregates and agglomerates;Bekker;Ann Occup Hyg,2016

2. Revisiting the effect of room size and general ventilation on the relationship between near-and far-field air concentrations;Cherrie;Ann Occup Hyg,2011

3. Response letter to Koivisto et al. ‘Evaluating the theoretical background of STOFFENMANAGER® and the advanced REACH tool’;Fransman;Ann Work Expo Health,2022

4. Advanced Reach Tool (ART): development of the mechanistic model;Fransman;Ann Occup Hyg,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Occupational inhalation exposure during surface disinfection—exposure assessment based on exposure models compared with measurement data;Journal of Exposure Science & Environmental Epidemiology;2023-12-25

2. Occupational exposure science;Annals of Work Exposures and Health;2023-09-05

3. Understanding the limitations and application of occupational exposure models in a REACH context;Journal of Occupational and Environmental Hygiene;2023-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3