Abstract
ABSTRACT
China's aging demographic poses a challenge for treating prevalent bone diseases impacting life quality. As bone regeneration capacity diminishes with age due to cellular dysfunction and inflammation, advanced biomaterials-based approaches offer hope for aged bone regeneration. This review synthesizes materiobiology principles, focusing on biomaterials that target specific biological functions to restore tissue integrity. It covers strategies for stem cell manipulation, regulation of the inflammatory microenvironment, blood vessel regeneration, intervention in bone anabolism and catabolism, and nerve regulation. The review also explores molecular and cellular mechanisms underlying aged bone regeneration and proposes a database-driven design process for future biomaterial development. These insights may also guide therapies for other age-related conditions, contributing to the pursuit of ‘healthy aging’.
Funder
Basic Science Center Program
National Natural Science Foundation of China
Foundation of Frontiers Science Center for Materiobiology and Dynamic Chemistry
Wego Project of Chinese Academy of Sciences
China Postdoctoral Science Foundation
Publisher
Oxford University Press (OUP)