Local-strain-induced CO2 adsorption geometries and electrochemical reduction pathway shift

Author:

Liu Chuhao1,Bu Yifan1,Xu Yifei1,Mahmood Azhar2,Xie Jisheng1ORCID,Fu Yifan1,Li Shiyun1,Peng Cheng1,Wu Yue3,Liang Xiao4,Zong Ruilong4,Li Wan-Lu5,Zhou Jihan1,Xu Bingjun1,Niu Li2,Li Mufan1ORCID

Affiliation:

1. College of Chemistry and Molecular Engineering, Peking University , Beijing 100871 , China

2. School of Chemistry and Chemical Engineering, Guangzhou University , Guangzhou 510006 , China

3. College of Materials Science and Engineering, Fuzhou University , Fuzhou 350108 , China

4. Department of Chemistry, Tsinghua University , Beijing 100084 , China

5. Department of NanoEngineering, University of California , San Diego, La Jolla 92093 , USA

Abstract

ABSTRACT Unravelling the influence of strain and geometric effects on the electrochemical reduction of carbon dioxide (CO2RR) on Cu-based (or Pd-based) alloys remains challenging due to complex local microenvironment variables. Herein, we employ two PdCu alloys (nanoparticles and nanodendrites) to demonstrate how CO2RR selectivity can shift from CO to HCOO−. Despite sharing consistent phases, exposed crystal facets, and overall oxidative states, these alloys exhibit different local strain profiles due to their distinct geometries. By integrating experimental data, in-situ spectroscopy, and density functional theory calculations, we revealed that CO2 prefers adsorption on tensile-strained areas with carbon-side geometry, following a *COOH-to-CO pathway. Conversely, on some compressive-strained regions induced by the dendrite-like morphology, CO2 adopts an oxygen-side geometry, favoring an *OCHO-to-HCOO pathway due to the downshift of the d-band center. Notably, our findings elucidate a dominant *OCHO-to-HCOO− pathway in catalysts when featuring both adsorption geometries. This research provides a comprehensive model for local environment of bimetallic alloys, and establishes a clear relationship between the CO2RR pathway shift and variation in local strain environments of PdCu alloys.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

College of Chemistry and Molecular Engineering at Peking University

Beijing National Laboratory for Molecular Sciences

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3