Wet-spinning of carbon nanotube fibers: dispersion, processing and properties

Author:

Yang Zhicheng123,Yang Yinan2,Huang Yufei4,Shao Yanyan5,Hao He4,Yao Shendong6,Xi Qiqing1,Guo Yinben1,Tong Lianming4,Jian Muqiang3,Shao Yuanlong263,Zhang Jin2463

Affiliation:

1. School of Materials Science and Engineering, Shanghai University of Engineering Science , Shanghai 201620 , China

2. School of Materials Science and Engineering, Peking University , Beijing 100871 , China

3. Beijing Graphene Institute (BGI) , Beijing 100095 , China

4. Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871 , China

5. College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, SUDA-BGI Collaborative Innovation Center, Soochow University , Suzhou 215006 , China

6. Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100080 , China

Abstract

ABSTRACT Owing to the intrinsic excellent mechanical, electrical, and thermal properties of carbon nanotubes (CNTs), carbon nanotube fibers (CNTFs) have been expected to become promising candidates for the next-generation of high-performance fibers. They have received considerable interest for cutting-edge applications, such as ultra-light electric wire, aerospace craft, military equipment, and space elevators. Wet-spinning is a broadly utilized commercial technique for high-performance fiber manufacturing. Thus, compared with array spinning from drawable CNTs vertical array and direct dry spinning from floating catalyst chemical vapor deposition (FCCVD), the wet-spinning technique is considered to be a promising strategy to realize the production of CNTFs on a large scale. In this tutorial review, we begin with a summative description of CNTFs wet-spinning process. Then, we discuss the high-concentration CNTs wet-spinning dope preparation strategies and corresponding non-covalent adsorption/charge transfer mechanisms. The filament solidification during the coagulation process is another critical procedure for determining the configurations and properties for derived CNTFs. Next, we discuss post-treatment, including continuous drafting and thermal annealing, to further optimize the CNTs orientation and compact configuration. Finally, we summarize the physical property-structure relationship to give insights for further performance promotion in order to satisfy the prerequisite for detailed application. Insights into propelling high-performance CNTFs production from lab-scale to industry-scale are proposed, in anticipation of this novel fiber having an impact on our lives in the near future.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Gusu's Young Leading Talent

Key Industry Technology Innovation Project of Suzhou

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3