Highly efficient and stable binary and ternary organic solar cells using polymerized nonfused ring electron acceptors

Author:

Wang Xiaodong1,Wei Nan2,Chen Ya-nan1,Ran Guangliu3,Zhang Andong1,Lu Hao14,Wei Zhengdong4,Liu Yahui1ORCID,Zhang Wenkai3,Bo Zhishan12

Affiliation:

1. College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University , Qingdao 266071 , China

2. Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University , Beijing 100875 , China

3. Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University , Beijing 100875 , China

4. College of Materials Science and Engineering, Qingdao University , Qingdao 266071 , China

Abstract

Abstract This study reports the successful design and synthesis of two novel polymerized nonfused ring electron acceptors, P-2BTh and P-2BTh-F, derived from the high-performance nonfused ring electron acceptor, 2BTh-2F. Prepared via Stille polymerization, these polymers feature thiophene and fluorinated thiophene as π-bridge units. Notably, P-2BTh-F, with difluorothiophene as the π-bridge, exhibits a more planar backbone and red-shifted absorption spectrum compared with P-2BTh. When employed in OSCs with PBDB-T as the donor material, P-2BTh-F-based devices demonstrate an outstanding power conversion efficiency (PCE) of over 11%, exceeding the 8.7% achieved by P-2BTh-based devices. Furthermore, all-polymer solar cells utilizing PBDB-T: P-2BTh-F exhibit superior storage stability. Additionally, P-2BTh-F was explored as a functional additive in a high-performance binary system, enhancing stability while maintaining comparable PCE (19.45%). This strategy offers a cost-effective approach for fabricating highly efficient and stable binary and ternary organic solar cells, opening new horizons for cost-effective and durable solar cell development.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3