A novel cathode interphase formation methodology by preferential adsorption of a borate-based electrolyte additive

Author:

Zhang Danfeng1ORCID,Ma Jiabin1,Zhang Chen1,Liu Ming1,Yang Ke1,Li Yuhang1,Cheng Xing1,Wang Ziqiang1,Wang Huiqi2,Lv Wei1,He Yan-Bing1,Kang Feiyu1

Affiliation:

1. Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University , Shenzhen 518055 , China

2. School of Material Science and Engineering & School of Energy and Power Engineering, North University of China , Taiyuan 030051 , China

Abstract

ABSTRACT The coupling of high-capacity cathodes and lithium metal anodes promises to be the next generation of high-energy-density batteries. However, the fast-structural degradations of the cathode and anode challenge their practical application. Herein, we synthesize an electrolyte additive, tris(2,2,3,3,3-pentafluoropropyl) borane (TPFPB), for ultra-stable lithium (Li) metal||Ni-rich layered oxide batteries. It can be preferentially adsorbed on the cathode surface to form a stable (B and F)-rich cathode electrolyte interface film, which greatly suppresses the electrolyte-cathode side reactions and improves the stability of the cathode. In addition, the electrophilicity of B atoms in TPFPB enhances the solubility of LiNO3 by 30 times in ester electrolyte to significantly improve the stability of the Li metal anode. Thus, the Li||Ni-rich layered oxide full batteries using TPFPB show high stability and an ultralong cycle life (up to 1500 cycles), which also present excellent performance even under high voltage (4.8 V), high areal mass loading (30 mg cm−2) and wide temperature range (−30∼60°C). The Li||LiNi0.9Co0.05Mn0.05O2 (NCM90) pouch cell using TPFPB with a capacity of 3.1 Ah reaches a high energy density of 420 Wh kg−1 at 0.1 C and presents outstanding cycling performance.

Funder

National Science Fund for Distinguished Young Scholars

National Key Research and Development Program of China

National Natural Science Foundation of China

Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center

Shenzhen Technical Plan Project

Shenzhen Pengrui Young Faculty Program Research Plan

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3