Affiliation:
1. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
2. University of Chinese Academy of Sciences , Beijing 100049 , China
3. Department of Chemical Physics, University of Science and Technology of China , Hefei 230026 , China
Abstract
ABSTRACT
Plastics are one of the most produced synthetic materials and largest commodities, used in numerous sectors of human life. To upcycle waste plastics into value-added chemicals is a global challenge. Despite significant progress in pyrolysis and hydrocracking, which mainly leads to the formation of pyrolysis oil, catalytic upcycling to value-added aromatics, including benzene, toluene and xylene (BTX), in one step, is still limited by high reaction temperatures (>500°C) and a low yield. We report herein CO2-facilitated upcycling of polyolefins and their plastic products to aromatics below 300°C, enabled by a bifunctional Pt/MnOx-ZSM-5 catalyst. ZSM-5 catalyzes cracking of polyolefins and aromatization, generating hydrogen at the same time, while Pt/MnOx catalyzes the reaction of hydrogen with CO2, consequently driving the reaction towards aromatization. Isotope experiments reveal that 0.2 kg CO2 is consumed per 1.0 kg polyethylene and 90% of the consumed CO2 is incorporated into the aromatic products. Furthermore, this new process yields 0.63 kg aromatics (BTX accounting for 60%), comparing favorably with the conventional pyrolysis or hydrocracking processes, which produce only 0.33 kg aromatics. In this way, both plastic waste and the greenhouse gas CO2 are turned into carbon resources, providing a new strategy for combined waste plastics upcycling and carbon dioxide utilization.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献