Author:
Andersen Hans-Erik,Clarkin Tobey,Winterberger Ken,Strunk Jacob
Abstract
Abstract
The accuracy of recreational- and survey-grade global positioning system (GPS) receivers was evaluated across a range of forest conditions in the Tanana Valley of interior Alaska. High-accuracy check points, established using high-order instruments and closed-traverse surveying methods, were then used to evaluate the accuracy of positions acquired in different forest types using a recreational-grade GPS unit and a Global Navigation Satellite System (GLONASS)-enabled survey-grade unit, over a range of acquisition and postprocessing alternatives, including distance to base station, or baseline length (0ߝ10, 10ߝ50, 50ߝ100, and >100 km), use of Russian GLONASS satellites, and occupation times (5, 10, and 20 minutes). The accuracy of recreational-grade GPS was 3ߝ7 m across all sites. For survey-grade units, accuracies were influenced by forest type and baseline length, with lower errors observed with more open stands and shorter baseline lengths. The use of GLONASS satellites improved positions by a small but appreciable amount, and longer observation times (20 minutes) resulted in more reliably accurate positions across all sites. In general, these results indicate that if forest inventory plots in interior Alaska and other high-latitude regions of the world are occupied for 20 minutes with survey-grade instruments, positions with submeter error can be consistently obtained across a wide range of conditions.
Publisher
Oxford University Press (OUP)
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献