Environmental determinants of total evaporative water loss in birds at multiple temperatures

Author:

Song Soorim1ORCID,Beissinger Steven R12ORCID

Affiliation:

1. Department of Environmental Science, Policy & Management, University of California, Berkeley, California, USA

2. Museum of Vertebrate Zoology, University of California, Berkeley, California, USA

Abstract

Abstract Endotherms dissipate heat to the environment to maintain a stable body temperature at high ambient temperatures, which requires them to maintain a balance between heat dissipation and water conservation. Birds are relatively small, contain a large amount of metabolically expensive tissue, and are mostly diurnal, making them susceptible to physiological challenges related to water balance and heat dissipation. We compiled total evaporative water loss (TEWL) measurements for 174 species of birds exposed to different temperatures and used comparative methods to examine their relationships with body size, ambient temperature, precipitation, diet, and diel activity cycle. TEWL in the thermoneutral zone (TNZ) was associated primarily with body mass and activity phase. Larger and more active-phase birds, with their higher metabolic rates, lost more water through evaporation than smaller, resting-phase birds, particularly at higher thermal exposures. However, maximum temperature of the natural habitat became an important determinant of TEWL when birds were exposed to temperatures exceeding the TNZ. Species from hotter climates exhibited higher TEWL. Adaptation to arid climates did not restrict evaporative water loss at thermal conditions within the TNZ, but promoted evaporative water loss at exposures above the TNZ. The TEWL of granivores, which ingest food with low water content, differed little from species with other food habitats under all thermal conditions. The effects of environmental covariates of TEWL were dissimilar across thermal exposures, suggesting no evidence for a tradeoff between water conservation in the TNZ and heat dissipation at exposure to higher temperatures. Thus, birds may be able to acclimate when climate change results in the need to increase heat dissipation due to warming, except perhaps in hot, arid environments where species will need to depend heavily upon evaporative cooling to maintain homeothermy.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3