Frost Crack Incidence in Northern Hardwood Forests of the Southern Boreal–North Temperate Transition Zone

Author:

Burton Julia I.,Zenner Eric K.,Frelich Lee E.

Abstract

Abstract Frost cracks are common in northern hardwood stands near their northern range limits. Although they have long been attributed to the regional climate, temperature fluctuations result in surface cracks largely when internal wounds are present. We examined the relationship between the proportion of trees with frost cracks and both tree-level diameter class and stand structural characteristics in primary stands with a history of minimal logging (n = 4) and 67- to 97-year-old second-growth stands subjected to past heavy partial cuts and high grading (n = 8). We hypothesized that frost crack incidence would (1) be greater in the second-growth stands and (2) be associated with differences in structural attributes between the two stand types. High levels of frost cracking in primary stands indicated that cracks are not completely avoidable. However, the proportion of trees with frost cracks was significantly higher in second-growth than primary stands, particularly on small-diameter trees. For example, the odds for frost cracking were 1.66–3.74 times greater in second-growth than in primary stands in the 15-cm diameter class, but were not different in the 45+-cm diameter class. Frost cracking was positively associated with increasing diameter in both stand types. Structural characteristics reflecting tree size, stand basal area, and basal area of hardwoods were positively associated with the proportion of trees with frost cracks in second-growth stands but not in primary stands. Although the basal area of conifers was negatively associated with frost cracking, the effect was likely due to a reduction in hardwood basal area in the vicinity of conifers. We suggest that greater frost crack incidence in second-growth stands is likely a consequence of injuries to residual trees during selective logging.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,General Materials Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3