The benefits of using topographic features to predict climate-resilient habitat for migratory forest landbirds: An example for the Rusty Blackbird, Olive-sided Flycatcher, and Canada Warbler

Author:

Bale Shannon1,Beazley Karen F1,Westwood Alana2,Bush Peter3

Affiliation:

1. School for Resource and Environmental Studies, Dalhousie University, Nova Scotia, Canada

2. Department of Biology, Dalhousie University, Nova Scotia, Canada

3. Nova Scotia Department of Lands and Forestry, Nova Scotia, Canada

Abstract

Abstract Maintaining a functionally connected network of high-quality habitat is one of the most effective responses to biodiversity loss. However, the spatial distribution of suitable habitat may shift over time in response to climate change. Taxa such as migratory forest landbirds are already undergoing climate-driven range shifts. Therefore, patches of climate-resilient habitat (also known as “climate refugia”) are especially valuable from a conservation perspective. Here, we performed maximum entropy (Maxent) species distribution modeling to predict suitable and potentially climate-resilient habitat in Nova Scotia, Canada, for 3 migratory forest landbirds: Rusty Blackbird (Euphagus carolinus), Olive-sided Flycatcher (Contopus cooperi), and Canada Warbler (Cardellina canadensis). We used a reverse stepwise elimination technique to identify covariates that influence habitat suitability for the target species at broad scales, including abiotic (topographic control of moisture and nutrient accumulation) and biotic (forest characteristics) covariates. As topography should be relatively unaffected by a changing climate and helps regulate the structure and composition of forest habitat, we posit that the inclusion of appropriate topographic features may support the identification of climate-resilient habitat. Of all covariates, depth to water table was the most important predictor of relative habitat suitability for the Rusty Blackbird and Canada Warbler, with both species showing a strong association with wet areas. Mean canopy height was the most important predictor for the Olive-sided Flycatcher, whereby the species was associated with taller trees. Our models, which comprise the finest-scale species distribution models available for these species in this region, further indicated that, for all species, habitat (1) remains relatively abundant and well distributed in Nova Scotia and (2) is often located in wet lowlands (a climate-resilient topographic landform). These findings suggest that opportunities remain to conserve breeding habitat for these species despite changing temperature and precipitation regimes.

Funder

K. Beazley’s Social Sciences and Humanities Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference103 articles.

1. Olive-sided Flycatcher (Contopus cooperi);Altman,2012

2. Conserving the stage: Climate change and the geophysical underpinnings of species diversity;Anderson;PLOS One,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3