Kangfuxin liquid reduces the ultraviolet B-induced photodamage of HaCaT cells by regulating autophagy

Author:

Lin Xianghong1ORCID,Chu Jimin2,Xiang Yang3,He Miao4,Ma Qiong5,Duan Jingxian5,Wang Yan5,Sun Sujiao5

Affiliation:

1. College of Clinical Medicine, Dali University , Dali, Yunnan , China

2. Department of Skin Medical Beauty, People's Hospital of Pengshui County , Pengshui, Chongqing , China

3. Key Laboratory of Human Aging in Jiangxi Province, Nanchang University , Nanchang, Jiangxi , China

4. College of Pharmacy and Chemistry, Dali University , Dali, Yunnan , China

5. Department of Medical Cosmetology, The First Affiliated Hospital of Dali University , Dali, Yunnan , China

Abstract

ABSTRACT Kangfuxin liquid (KFX), an extract of the American cockroach, has been clinically proven to be effective in various skin damage disorders, but there are no reports on its use in photodamage. We explored the effect of KFX on ultraviolet B (UVB)-induced photodamage and whether its mechanism was related to autophagy. We found that KFX treatment reduced UVB-induced reactive oxygen species production and improved the vitality of cells inhibited by UVB irradiation. The expression of LC3 (A/B), which was inhibited after UVB irradiation, could be rescued by KFX treatment. Furthermore, KFX may upregulate the level of cellular autophagy by regulating the AMPK-mTOR signaling pathway. When the autophagy inhibitor wortmannin was used to inhibit autophagy, the protective effect of KFX on cells was diminished or even disappeared. Our study suggests that KFX may resist UVB-mediated oxidative stress damage of HaCaT through the induction of autophagy.

Funder

Department of Science and Technology of Yunnan Province

Dali University

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3