In situcharacterization of the agglutination of lectins via cross-linking of carbohydrates by time-resolved measurement of forward static light scattering

Author:

Ogata Makoto12,Onoda Takashi2,Wakamatsu Takashi34

Affiliation:

1. Faculty of Food and Agricultural Sciences, Fukushima University , 1 Kanayagawa, Fukushima city, Fukushima , Japan

2. Department of Applied Chemistry and Biochemistry, National Institute of Technology , Fukushima College, 30 Nagao, Iwaki, Fukushima , Japan

3. Department of Electrical and Electronic System Engineering, National Institute of Technology , Fukushima College, 30 Nagao, Iwaki, Fukushima , Japan

4. Department of Industrial Engineering, National Institute of Technology , Ibaraki College, 866 Nakane, Hitachinaka, Ibaraki , Japan

Abstract

ABSTRACTWe present real-time observations of a structurally variable process for cross-linking agglutination between multivalent lectins and glycoclusters using a small-angle forward static light scattering (F-SLS) technique. In this study, a cross-linking agglutination reaction was carried out using a tetravalent Neu5Acα2,6LacNAc-glycocluster and Sambucus sieboldiana agglutinin (SSA). The scattering intensity of time-resolved F-SLS increased with formation of the Neu5Acα2,6LacNAc-glycocluster—SSA cross-linked complex. Using this approach, fine sequential cross-linking agglutination between glycoclusters and lectins was observed in real-time. The rate of increase in the intensity of time-resolved F-SLS increased with the concentration of sialo-glycoclusters and SSA. Structural analysis based on the fractal dimension using time-resolved F-SLS patterns revealed that the density of the aggregates changed with progression of the cross-linking reaction until equilibrium was reached. This is the first report to evaluate the cross-linking agglutination reaction between glycoclusters and lectins and analysis of the subsequent structure of the obtained aggregates using time-resolved measurements of F-SLS.

Funder

JSPS

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3