Effects of Western Balsam Bark Beetle on Spruce-Fir Forests of North-Central Wyoming

Author:

McMillin Joel D.1,Allen Kurt K.2,Long Daniel F.2,Harris Jeri Lyn3,Negrón José F.4

Affiliation:

1. USDA Forest Service, Forest Health Protection, Flagstaff, AZ 86001

2. USDA Forest Service, Forest Health Management, Rapid City, SD 57702

3. USDA Forest Service, Forest Health Management, Lakewood, CO 80225

4. USDA Forest Service, Rocky Mountain Research Station, Ft. Collins, CO 80256

Abstract

Abstract Western balsam bark beetle, Dryocoetes confusus (Coleoptera: Scolytidae), has caused widespread mortality of subalpine fir (Abies lasiocarpa) in western North America throughout the past decade. The objectives of this study were to document the effects of this mortality, relate mortality to pre-existing stand conditions, and investigate the role of storm-damaged fir in beetle population dynamics in north-central Wyoming. Transect cruise lines and pairs of infested and uninfested plots were installed to detect changes in the forest overstory and understory and to determine associations between stand conditions and beetle-caused fir mortality. On average, beetles killed more than 70 trees/ac over the last several years. This mortality resulted in significant decreases in: subalpine fir basal area, trees per acre, stand density index, and the percentage of subalpine fir stems in the overstory. Small, but significant increases were detected in the understory; herbaceous plant abundance increased in the infested plots compared with the noninfested plots. Moreover, significant positive linear relationships were found between the amount of fir mortality and the percentage of subalpine fir trees in a stand, subalpine fir basal area, and subalpine fir stand density index. In addition, a significant positive linear relationship was found between the percentage of wind-caused downed fir logs in an area and the percentage of logs utilized by western balsam bark beetle. The blowdown events that occurred in the mid-1990s in combination with a high percentage of fir component has provided ideal conditions for continued beetle expansion. West. J. Appl. For. 18(4):259–266.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3