Organic Soils Control Beetle Survival While Competitors Limit Aphid Population Growth

Author:

Krey Karol L1,Blubaugh Carmen K12,Van Leuven James T3,Snyder William E1ORCID

Affiliation:

1. Department of Entomology, Washington State University, Pullman, WA

2. Department of Plant and Environmental Sciences, Clemson University, Clemson, SC

3. Center for Modeling Complex Interactions, University of Idaho, Moscow, ID

Abstract

Abstract Soil chemistry and microbial diversity can impact the vigor and nutritive qualities of plants, as well as plants’ ability to deploy anti-herbivore defenses. Soil qualities often vary dramatically on organic versus conventional farms, reflecting the many differences in soil management practices between these farming systems. We examined soil-mediated effects on herbivore performance by growing potato plants (Solanum tuberosum L.) in soils collected from organic or conventional commercial farm fields, and then exposing these plants to herbivory by green peach aphids (Myzus persicae Sulzer, Hemiptera: Aphididae) and/or Colorado potato beetles (Leptinotarsa decemlineata Say, Coleoptera: Chrysomelidae). Responses of the two potato pests varied dramatically. Survivorship of Colorado potato beetles was almost 3× higher on plants grown in organic than in conventional soils, but was unaffected by the presence of aphids. In contrast, aphid colony growth was twice as rapid when aphids were reared alone rather than with Colorado potato beetles, but was unaffected by soil type. We saw no obvious differences in soil nutrients when comparing organic and conventional soils. However, we saw a higher diversity of bacteria in organic soils, and potato plants grown in this soil had a lower carbon concentration in foliar tissue. In summary, the herbivore species differed in their susceptibility to soil- versus competitor-mediated effects, and these differences may be driven by microbe-mediated changes in host plant quality. Our results suggest that soil-mediated effects on pest growth can depend on herbivore species and community composition, and that soil management strategies that promote plant health may also increase host quality for pests.

Funder

Specialty Crop Research Initiative

USDA National Institute of Food and Agriculture

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3