Receptor for advanced glycation end products: a key molecule in the genesis of chronic kidney disease vascular calcification and a potential modulator of sodium phosphate co-transporter PIT-1 expression

Author:

Belmokhtar Karim12,Ortillon Jeremy12,Jaisson Stéphane13,Massy Ziad A45,Boulagnon Rombi Camille16,Doué Manon1,Maurice Pascal1,Fritz Günter7,Gillery Philippe13,Schmidt Ann Marie8,Rieu Philippe129,Touré Fatouma129

Affiliation:

1. Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France

2. Laboratoire de Néphrologie, Univesrity of Reims, Faculté de Médecine, Reims, France

3. University Hospital of Reims, Maison Blanche Hospital, Laboratory of Pediatric Biology and Research, Reims, France

4. Division of Nephrology, Ambroise Paré Hospital, APHP, Versailles Saint-Quentin-en-Yvelines University (Paris-Ile-de-France-Ouest University), UVSQ, Boulogne Billancourt/Paris, France

5. Inserm U1018, Team5, CESP, Paris Saclay Unioversityand Versailles Saint-Quentin-en-Yvelines University (Paris-Ile-de-France-Ouest University, UVSQ), Villejuif, France

6. CHU Reims, Division of Anatomopathology, Reims, France

7. Institute of Neuropathology, University of Freiburg, Germany

8. Diabetes Research Program, NYU, New York, NY, USA

9. CHU Reims, Division of Nephrology, Reims, France

Abstract

Abstract Background Chronic kidney disease (CKD) is associated with increased cardiovascular mortality, frequent vascular calcification (VC) and accumulation of uraemic toxins. Advanced glycation end products and S100 proteins interact with the receptor for advanced glycation end products (RAGE). In the present work, we aimed to investigate the role(s) of RAGE in the CKD–VC process. Methods Apoe−/− or Apoe−/−Ager (RAGE)−/− male mice were assigned to CKD or sham-operated groups. A high-phosphate diet was given to a subgroup of Apoe−/−and Apoe−/−Ager−/− CKD mice. Primary cultures of Ager+/+ and Ager−/− vascular smooth muscle cells (VSMCs) were established and stimulated with either vehicle, inorganic phosphate (Pi) or RAGE ligands (S100A12; 20 µM). Results After 12 weeks of CKD we observed a significant increase in RAGE ligand (AGE and S100 proteins) concentrations in the serum of CKD Apoe−/− mice. Ager messenger RNA (mRNA) levels were 4-fold higher in CKD vessels of Apoe−/− mice. CKD Apoe−/− but not CKD Apoe−/− or Ager−/− mice displayed a marked increase in the VC surface area. Similar trends were found in the high-phosphate diet condition. mRNA levels of Runx2 significantly increased in the Apoe−/− CKD group. In vitro, stimulation of Ager+/+VSMCs with Pi or S100A12 induced mineralization and osteoblast transformation, and this was inhibited by phosphonoformic acid (Pi co-transporters inhibitor) and Ager deletion. In vivo and in vitro RAGE was necessary for regulation of the expression of Pit-1, at least in part through production of reactive oxygen species. Conclusion RAGE, through the modulation of Pit-1 expression, is a key molecule in the genesis of VC.

Funder

Fondation Lefoulon Delalande

Société Francophone de Dialyse

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

Reference63 articles.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3