Affiliation:
1. College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, People's Republic of China
2. Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, People's Republic of China
Abstract
ABSTRACT
Gangliosides (GLSs) are ubiquitously distributed in all tissues but highly enriched in nervous system. Currently, it is unclear how exogenous GLSs regulate neuritogenesis, although neural functions of endogenous GLSs are widely studied. Herein, we evaluated the neuritogenic activities and mechanism of sea urchin gangliosides (SU-GLSs) in vitro. These different glycosylated SU-GLSs, including GM4(1S), GD4(1S), GD4(2A), and GD4(2G), promoted differentiation of NGF-induced PC12 cells in a dose-dependent and structure-selective manner. Sulfate-type and disialo-type GLSs exhibited stronger neuritogenic effects than monosialoganglioside GM1. Furthermore, SU-GLSs might act as neurotrophic factors possessing neuritogenic effects, via targeting tyrosine-kinase receptors (TrkA and TrkB) and activating MEK1/2-ERK1/2-CREB and PI3K-Akt-CREB pathways. This activation resulted in increased expression and secretion of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). These pathways were verified by specific inhibitors. Our results confirmed the neuritogenic functions of SU-GLS in vitro and indicated their potential roles as natural nutrition for neuritogenesis.
Funder
National Key Research and Development Program of China
Publisher
Oxford University Press (OUP)
Subject
Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献