Affiliation:
1. Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan
2. Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan
Abstract
ABSTRACT
3-Hydroxypropionic acid (3-HP) and 1,3-propanediol (1,3-PDO) have tremendous potential markets in many industries. This study evaluated the simultaneous biosynthesis of the 2 compounds using the new psychrophile-based simple biocatalyst (PSCat) reaction system. The PSCat method is based on the expression of glycerol dehydratase, 1,3-propanediol dehydrogenase, and aldehyde dehydrogenase from Klebsiella pneumoniae in Shewanella livingstonensis Ac10 and Shewanella frigidimarina DSM 12253, individually. Heat treatment at 45 °C for 15 min deactivated the intracellular metabolic flux, and the production process was started after adding substrate, cofactor, and coenzyme. In the solo production process after 1 h, the maximum production of 3-HP was 62.0 m m. For 1,3-PDO, the maximum production was 25.0 m m. In the simultaneous production process, productivity was boosted, and the production of 3-HP and 1,3-PDO increased by 13.5 and 4.9 m m, respectively. Hence, the feasibility of the individual production and the simultaneous biosynthesis system were verified in the new PSCat approach.
Publisher
Oxford University Press (OUP)
Subject
Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献