Improved ammonia production from soybean residues by cell surface-displayed l-amino acid oxidase on yeast

Author:

Watanabe Yukio1,Aoki Wataru12ORCID,Ueda Mitsuyoshi12ORCID

Affiliation:

1. Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

2. Japan Science and Technology Agency (JST), Tokyo, Japan

Abstract

ABSTRACT Ammonia is critical for agricultural and chemical industries. The extracellular production of ammonia by yeast (Saccharomyces cerevisiae) using cell surface engineering can be efficient approach because yeast can avoid growth deficiencies caused by knockout of genes for ammonia assimilation. In this study, we produced ammonia outside the yeast cells by displaying an l-amino acid oxidase with a wide substrate specificity derived from Hebeloma cylindrosporum (HcLAAO) on yeast cell surfaces. The HcLAAO-displaying yeast successfully produced 12.6 m m ammonia from a mixture of 20 proteinogenic amino acids (the theoretical conversion efficiency was 63%). We also succeeded in producing ammonia from a food processing waste, soybean residues (okara) derived from tofu production. The conversion efficiency was 88.1%, a higher yield than reported in previous studies. Our study demonstrates that ammonia production outside of yeast cells is a promising strategy to utilize food processing wastes.

Funder

Core Research for Evolutional Science and Technology

Japan Science and Technology Agency

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3