One-pot enzymatic synthesis of 2-deoxy-scyllo-inosose from d-glucose and polyphosphate

Author:

Kudo Fumitaka1ORCID,Mori Ayaka1,Koide Mai1,Yajima Ryo1,Takeishi Ryohei1,Miyanaga Akimasa1ORCID,Eguchi Tadashi1ORCID

Affiliation:

1. Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan

Abstract

Abstract 2-Deoxy-scyllo-inosose (2DOI, [2S,3R,4S,5R]-2,3,4,5-tetrahydroxycyclohexan-1-one) is a biosynthetic intermediate of 2-deoxystreptamine-containing aminoglycoside antibiotics, including butirosin, kanamycin, and neomycin. In producer microorganisms, 2DOI is constructed from d-glucose 6-phosphate (G6P) by 2-deoxy-scyllo-inosose synthase (DOIS) with the oxidized form of nicotinamide adenine dinucleotide (NAD+). 2DOI is also known as a sustainable biomaterial for production of aromatic compounds and a chiral cyclohexane synthon. In this study, a one-pot enzymatic synthesis of 2DOI from d-glucose and polyphosphate was investigated. First, 3 polyphosphate glucokinases (PPGKs) were examined to produce G6P from d-glucose and polyphosphate. A PPGK derived from Corynebacterium glutamicum (cgPPGK) was found to be suitable for G6P production under ordinary enzymatic conditions. Next, 7 DOISs were examined for the one-pot enzymatic reaction. As a result, cgPPGK and BtrC, the latter of which is a DOIS derived from the butirosin producer Bacillus circulans, achieved nearly full conversion of d-glucose to 2DOI in the presence of polyphosphate.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Reference39 articles.

1. Re-evaluation of phosphoric acid–phosphates – di-, tri- and polyphosphates (E 338–341, E 343, E 450–452) as food additives and the safety of proposed extension of use;EFSA Panel on Food Additives and Flavourings (FAF);EFSA J,2019

2. Metabolically engineered recombinant Saccharomyces cerevisiae for the production of 2-deoxy-scyllo-inosose (2-DOI);Al-Fahad;Metab Eng Commun,2020

3. Environmentally compatible synthesis of adipic acid from D-glucose;Draths;J Am Chem Soc,1994

4. Environmentally compatible synthesis of catechol from D-glucose;Draths;J Am Chem Soc,1995

5. A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle;Gillespie;J Bacteriol,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3