Biot's theory-based dynamic equation modeling using a machine learning auxiliary approach

Author:

Xiong Fansheng1,Wang Bochen23ORCID,Liu Jiawei34,Guo Zhenwei23ORCID,Liu Jianxin23

Affiliation:

1. Yanqi Lake Beijing Institute of Mathematical Sciences and Applications , Beijing 101408 , China

2. School of Geosciences and Info-physics, Central South University , Changsha 410083 , China

3. Hunan Key Laboratory of Nonferrous Resources and Geological Hazard Exploration , Changsha 410083 , China

4. Advanced Institute for Materials Research, Tohoku University , Sendai 980-8577 , Japan

Abstract

Abstract Characterizing seismic wave propagation in a fluid-saturated porous media well enhances the precision of interpreting seismic data, bringing benefits to understanding reservoir properties better. Some important indicators, including wave dispersion and attenuation, along with the wavefield, are widely used for interpreting the reservoir, and they can be obtained from a rock physics model. In existing models, some of them are limited in scope due to their complexity, for example, numerical solutions are difficult or costly. In view of this, this study proposes an approach of establishing equivalent dynamic equations of existing models. First, the framework of the equivalent model is derived based on Biot's theory, while the elastic coefficients are set as unknown factors. The next step is to use deep neural networks (DNNs) to predict these coefficients, and surrogate models of unknowns are established after training DNNs. The training data is naturally generated from the original model. The simplicity of the equation forms, compared to the original complex model and some other equivalents such as the viscoelastic model, enables the framework to perform wavefield simulation easier. Numerical examples show that the established equivalent model can not only predict similar dispersion and attenuation, but also obtain wavefields with small differences. This also indicates that it may be sufficient to establish an equivalent model only according to dispersion and attenuation, and the cost of generating such data is very small compared to simulating the wavefield. Therefore, the proposed approach is expected to effectively improve the computational difficulty of some existing models.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3