Responding to Threats Both Foreign and Domestic: NOD-Like Receptors in Corals

Author:

Dimos Bradford A1ORCID,Butler Caleb C1,Ricci Contessa A1ORCID,MacKnight Nicholas J1,Mydlarz Laura D1

Affiliation:

1. Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA

Abstract

Abstract Historically mechanisms with which basal animals such as reef-building corals use to respond to changing and increasingly stressful environments have remained elusive. However, the increasing availability of genomic and transcriptomic data from these organisms has provided fundamental insights into the biology of these critically important ecosystem engineers. Notably, insights into cnidarians gained in the post-genomics age have revealed a surprisingly complex immune system which bears a surprising level of similarity with the vertebrate innate immune system. This system has been critically linked to how corals respond to the two most prominent threats on a global scale, emerging coral diseases and increasing water temperature, which are recognized cellularly as either foreign or domestic threats, respectively. These threats can arise from pathogenic microbes or internal cellular dysfunction, underscoring the need to further understand mechanisms corals use to sense and respond to threats to their cellular integrity. In this investigation and meta-analysis, we utilize resources only recently available in the post-genomic era to identify and characterize members of an underexplored class of molecules known as NOD-like receptors in the endangered Caribbean coral Orbicella faveolata. We then leverage these data to identify pathways possibly mediated by NLRs in both O. faveolata and the ecologically important branching coral Acropora digitifera. Overall, we find support that this class of proteins may provide a mechanistic link to how reef-building corals respond to threats both foreign and domestic.

Funder

National Science Foundation-IOS

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3