Diet-Induced Plasticity of Linear Static Allometry Is Not So Simple for Grasshoppers: Genotype–Environment Interaction in Ontogeny Is Masked by Convergent Growth

Author:

Thompson Daniel B1ORCID

Affiliation:

1. School of Life Sciences, University of Nevada, Las Vegas, NV 89154-4004, USA

Abstract

Abstract Grasshoppers, Melanoplus sanguinipes (Orthoptera: Acrididae), develop larger head width (HW) and shorter leg length, relative to body size, when fed low nutrient, lignin-rich grasses compared to sibs fed a diet of high nutrient grasses. To elucidate how underlying genetic variation and plasticity of growth generate plasticity of this linear static allometry within coarse-grained environments, I measured head and leg size of three nymphal instars and adult grasshoppers raised on either a low or high nutrient diet within a half-sib quantitative genetic experiment. Doubly-multivariate repeated measures multiple analysis of variance (MANOVA) of head, mandible, and hind leg size and their rate of growth (mm/period) and growth period (days) through ontogeny were used to analyze how the ontogeny of diet-induced plasticity for these variables and additive genetic variation for plasticity (genotype × environment interaction [G×E]) contribute to plasticity in functional linear static allometry. Genetic variation for diet-induced plasticity (G×E) of head and leg size varied through ontogeny, as did genetic variation for plasticity of growth in third and fourth instar nymphs. Despite extensive genetic variation in plasticity of HW and leg length in fourth instar nymphs, the static allometry between head and leg was stable within each diet because the patterns of G×E were similar for HW, leg length and their coordinated growth. Nutrient sensitive plasticity in growth shifted the intercept but not the slope of static allometry, a result consistent with one outcome of a graphical model of the relationships between G× E and plasticity of within environment static allometry. In addition, G×E of fourth instar head and leg size was reduced in adults by negatively size-dependent, convergent growth in the last period of ontogeny. Consequently, the bivariate reaction norms of head and leg size for adults exhibited no G×E and, again, plasticity in the intercept but not in the slope of static allometry. The ontogeny of seemingly simple diet-induced linear static allometry between functional body parts in grasshoppers arises from a complex combination of differing patterns of nutrient-sensitive growth, duration of growth, convergent growth, and G×E, all relevant to understanding the development and evolution of functional allometry in hemimetabolous insects.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3