External validation of the 2-year mortality prediction tool in hemodialysis patients developed using a Bayesian network

Author:

Granal Maelys1,Brokhes-Le Calvez Sophie2,Dimitrov Yves23,Chantrel François24,Borni-Duval Claire2,Muller Clotilde25,Délia May2,Krummel Thierry6,Hannedouche Thierry2ORCID,Ducher Micher1,Fauvel Jean-Pierre1

Affiliation:

1. Department of Nephrology, Hospices Civils de Lyon, Hôpital Edouard Herriot , UMR 5558 CNRS Lyon, Université Lyon 1, Lyon , France

2. Renal Research Division, AURAL Strasbourg , Strasbourg , France

3. Department of Nephrology, CH Haguenau , Haguenau , France

4. Department of Nephrology Groupe Hospitalier de la Région Mulhouse et Sud Alsace, Hôpital Emile Muller , Strasbourg , France

5. Department of Nephrology Groupe Hospitalier Saint-Vincent, Clinique Ste-Anne, Service de Néphrologie , Strasbourg , France

6. Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Service de Néphrologie et Hémodialyse , Strasbourg , France

Abstract

ABSTRACT Background In recent years, a number of predictive models have appeared to predict the risk of medium-term mortality in hemodialysis patients, but only one, limited to patients aged over 70 years, has undergone sufficiently powerful external validation. Recently, using a national learning database and an innovative approach based on Bayesian networks and 14 carefully selected predictors, we have developed a clinical prediction tool to predict all-cause mortality at 2 years in all incident hemodialysis patients. In order to generalize the results of this tool and propose its use in routine clinical practice, we carried out an external validation using an independent external validation database. Methods A regional, multicenter, observational, retrospective cohort study was conducted to externally validate the tool for predicting 2-year all-cause mortality in incident and prevalent hemodialysis patients. This study recruited a total of 142 incident and 697 prevalent adult hemodialysis patients followed up in one of the eight Association pour l'Utilisation du Rein Artificiel dans la région Lyonnaise (AURAL) Alsace dialysis centers. Results In incident patients, the 2-year all-cause mortality prediction tool had an area under the receiver curve (AUC-ROC) of 0.73, an accuracy of 65%, a sensitivity of 71% and a specificity of 63%. In prevalent patients, the performance for the external validation were similar in terms of AUC-ROC, accuracy and specificity, but was lower in term of sensitivity. Conclusion The tool for predicting all-cause mortality at 2 years, developed using a Bayesian network and 14 routinely available explanatory variables, obtained satisfactory external validation in incident patients, but sensitivity was insufficient in prevalent patients.

Publisher

Oxford University Press (OUP)

Reference38 articles.

1. Global prevalence of chronic kidney disease—a systematic review and meta-analysis.;Hill;PLoS One,2016

2. Chronic kidney disease: the global challenge;El Nahas;Lancet North Am Ed,2005

3. Prevalence of chronic kidney disease in the United States;Coresh;JAMA,2007

4. Trajectoires des patients en suppléance;Cremades;Nephrol Ther,2022

5. ERA Registry: Annual Report 2020 [Internet];Amsterdam UMC,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3