Do direct payments efficiently support incomes of small and large farms?

Author:

Ciliberti Stefano1ORCID,Severini Simone2ORCID,Ranalli Maria Giovanna3,Biagini Luigi2ORCID,Frascarelli Angelo1

Affiliation:

1. Dipartimento di Scienze Agrarie Alimentari e Ambientali (DSA3), Università degli Studi di Perugia , Italia

2. Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia , Viterbo, Italia

3. Dipartimento di Scienze Politiche, Università degli Studi di Perugia , Italia

Abstract

Abstract This paper assesses how efficiently Common Agricultural Policy direct payments enhance farm incomes by applying a quantile continuous treatment effect model on the Italian Farm Accountancy Data Network sample. Adding to previous analyses, we show that income responses to direct payments are higher in large farms rather than in small farms and lower in farms benefiting from larger levels of support. This suggests that direct payments are not very efficient in supporting incomes of small farms and reducing the disparity existing within the farm population. Furthermore, results suggest that there is scope to reduce the amount of payments provided to highly supported farms.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics,Agricultural and Biological Sciences (miscellaneous)

Reference66 articles.

1. Quantile continuous treatment effects;Alejo;Econometrics and Statistics,2018

2. M-quantile regression for multivariate longitudinal data with an application to the Millennium Cohort Study;Alfò;Journal of the Royal Statistical Society: Series C (Applied Statistics),2021

3. The incidence of agricultural policy;Alston;Handbook of Agricultural Economics,2002

4. Intensive and extensive impacts of EU subsidies on pesticide expenditures at the farm level;Aubert;Journal of Environmental Economics and Policy,2021

5. Fitting linear mixed-effects models using lme4;Bates;Journal of Statistical Software,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3