miR-345 inhibits migration and stem-like cell phenotype in gastric cancer via inactivation of Rac1 by targeting EPS8

Author:

Zhang Jieyun12,Wang Chenchen12,Yan Shican3,Yang Yanan12,Zhang Xiaowei12,Guo Weijian12

Affiliation:

1. Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China

2. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China

3. Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China

Abstract

AbstractTumor metastasis is the main cause of treatment failure and death in patients with late stage of gastric cancer (GC). Studies showed that microRNAs (miRNAs) are important regulators in the process of tumor metastasis. In this study, we used miRNA array analysis to search for metastasis-associated miRNAs in primary and matched metastasis tissues of patients with GC and found that miR-345-5p (miR-345) was significantly higher in primary sites. Decreased expression of miR-345 was observed in GC tissues and cell lines, which was correlated with aggressive stage and grade. Patients with a higher level of miR-345 had a better prognosis. miR-345 could inhibit the migration and spheroid formation abilities in GC cell lines in transwell assay and spheroid formation assay. RNA sequencing and bioinformatics analysis revealed that miR-345 downregulated the epidermal growth factor receptor pathway substrate 8 (EPS8) and its downstream Rac1 signaling. Mechanistically, we confirmed that miR-345 could target EPS8 by directly binding to its 3′ untranslated region by luciferase reporter assay. Further rescue assay showed that the ability of miR-345 in inhibiting the migration, stem-like cell phenotype, and epithelial–mesenchymal transition (EMT) in GC was partly dependent on targeting EPS8. In conclusion, miR-345 plays an inhibitory role in GC metastasis through inhibiting cell migration, EMT, and cancer stem cell phenotype via inactivation of Rac1 signaling by targeting EPS8, which provides the potential therapeutic and predictive value of miR-345 in GC.

Funder

National Natural Science Foundation of China

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3