Picropodophyllin inhibits type I endometrial cancer cell proliferation via disruption of the PI3K/Akt pathway

Author:

Dong Lin1,Du Meirong2,Lv Qianzhou1

Affiliation:

1. Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China

2. Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China

Abstract

Abstract The type-I insulin-like growth factor receptor (IGF-IR) is overexpressed in endometrial cancer. High IGF-IR expression was considered as an important prognostic factor for tumor progression. The purpose of this study was to investigate the role and molecular mechanism of IGF-IR inhibitor picropodophyllin (PPP) in the growth and development of endometrial cancer. High expression of IGF-IR was observed in endometrial cancer tissues, as well as in ECC-1 and KLE cell lines. PPP suppressed the number of clones of ECC-1 and KLE cell lines; however, it had no significant effect on HEC-1-A cell line, which expressed lower IGF-IR than ECC-1 and KLE cell lines. Furthermore, PPP reduced cell proliferation capacity, inhibited the IGF-IR mRNA expression, and suppressed protein phosphorylation of IGF-IR and Akt in the three cell lines. In addition, PPP inhibited the protein expression of survivin in KLE cell line after 1 h of exposure, though this effect did not last for prolonged time. In conclusion, IGF-IR was mostly overexpressed in type I endometrial cancer. High IGF-IR expression was an important prognostic factor of tumor progression. PPP mediated the down-regulation of IGF-IR phosphorylation and inhibited cell proliferation via the PI3K/Akt signal pathway. PPP may have the potential to become a clinical treatment target in endometrial carcinoma.

Funder

Project for Key Discipline Construction of Shanghai Health System

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3