NACC-1 regulates hepatocellular carcinoma cell malignancy and is targeted by miR-760

Author:

Yin Linan1,Sun Tingting2,Liu Ruibao1

Affiliation:

1. Department of Interventional, Harbin Medical University Cancer Hospital, Harbin 150040, China

2. Department of Gerontology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China

Abstract

Abstract Hepatocellular carcinoma (HCC) is the most prominent form of presentation in liver cancer. It is also the fourth most common cause of cancer-associated deaths globally. The role of nucleus accumbens associated protein-1 (NACC-1) has been evaluated in several cancers. This protein is a transcriptional regulator that regulates a number of significant cellular processes. In the current study, we aimed to understand the role of NACC-1 in HCC. Primarily, we measured the expression of NACC-1 using quantitative real time polymerase chain reaction and western blot analysis. We knocked down the expression of NACC-1 in HCC cell lines Huh7 and HepG2 by transferring a commercially synthesized small interfering RNA and explored the impact of NACC-1 knockdown on cellular growth, migration, invasion, and chemoresistance to doxorubicin. Through bioinformatic analysis, we identified NACC-1 as a potential target of miR-760. Using a dual reporter luciferase assay, we confirmed the predicted target and assessed miR-760-mediated regulation of NACC-1 and rescue of tumorigenic phenotypes. We observed increased expression of NACC-1 in HCC. Furthermore, knockdown of NACC-1 resulted in reduced cell proliferation and invasion and increased susceptibility to doxorubicin-mediated chemosensitivity. Overexpression of miR-760 in HCC cell lines rescued NACC-1-mediated migration and invasion. We revealed that miR-760 regulated NACC-1 expression in HCC. Our data indicated that both miR-760 and NACC-1 could be used as prognostic markers, and miR-760 may have therapeutic benefits for HCC and other cancers.

Funder

Scientific Research Project of Health Commission of Heilongjiang Province

Haiyan Grant

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3