An oral second-generation proteasome inhibitor oprozomib significantly inhibits lung cancer in a p53 independent manner in vitro

Author:

Zhu Hongge1,Wang Tianhai2,Xin Zhou1,Zhan Yiyi1,Gu Guoming1,Li Xiaoqin1,Wang Xiuli1,Yang Shune3,Liu Chunling1

Affiliation:

1. Department of Second Pulmonary Medicine, The Third Hospital Affiliated to the Xinjiang Medical University, Urumqi 830011, China

2. Department of Anesthesiology, The Third Hospital Affiliated to the Xinjiang Medical University, Urumqi 830011, China

3. Department of Lymphoma and Breast Cancer Internal Medicine, The Third Hospital Affiliated to the Xinjiang Medical University, Urumqi 830011, China

Abstract

Abstract The destruction of proteins via the ubiquitin–proteasome system is a multi-step, complex process involving polyubiquitination of substrate proteins, followed by proteolytic degradation by the macromolecular 26S proteasome complex. Inhibitors of the proteasome promote the accumulation of proteins that are deleterious to cell survival and are promising anticancer agents. Oprozomib (OPZ), an oral second-generation proteasome inhibitor, has been shown to inhibit the growth of several cancers in preclinical and clinical trials, including multiple myeloma and head and neck cancers, but its effects on lung cancer has not yet been determined. In this study, we evaluated the inhibitory effects of OPZ on lung cancer cell lines in vitro. The results showed that OPZ significantly suppressed cell proliferation and strongly induced apoptosis in both tested lung cancer cells independent of p53 expression. OPZ was able to cause obvious caspase 3 and PARP cleavages and stabilize p53 and its transcriptional targets p21, PUMA, and Noxa. Moreover, OPZ was capable of sensitizing lung cancer cells to the conventional chemotherapeutic drug cisplatin. Our study provides preclinical data and sheds light on the potential applications of proteasome inhibitor OPZ in lung cancer treatment.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3