IFN-γ establishes interferon-stimulated gene-mediated antiviral state against Newcastle disease virus in chicken fibroblasts

Author:

Yang Xin1,Arslan Mehboob1,Liu Xingjian1,Song Haozhi1,Du Mengtan1,Li Yinü1,Zhang Zhifang1

Affiliation:

1. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

Abstract Newcastle disease virus (NDV) causes severe economic losses through severe morbidity and mortality and poses a significant threat to the global poultry industry. Significant efforts have been made to develop novel vaccines and therapeutics; however, the interaction of NDV with the host is not yet fully understood. Interferons (IFNs), an integral component of innate immune signaling, act as the first line of defense against invading viruses. Compared with the mammalian repertoire of IFNs, limited information is available on the antiviral potential of IFNs in chickens. Here, we expressed chicken IFN-γ (chIFN-γ) using a baculovirus expression vector system, characterized its antiviral potential against NDV, and determined its antiviral potential. Priming of chicken embryo fibroblasts with chIFN-γ elicited an antiviral environment in primary cells, which was mainly due to interferon-stimulated genes (ISGs). A genome-wide transcriptomics approach was used to elucidate the possible signaling pathways associated with IFN-γ-induced immune responses. RNA-sequencing (RNA-seq) data revealed significant induction of ISG-associated pathways, activated temporal expression of ISGs, antiviral mediators, and transcriptional regulators in a cascade of antiviral responses. Collectively, we found that IFN-γ significantly elicited an antiviral response against NDV infection. These data provide a foundation for chIFN-γ-mediated antiviral responses and underpin functional annotation of these important chIFN-γ-induced antiviral influencers.

Funder

National Natural Sciences Foundation of China

National Key Research and Development Program of China

Publisher

China Science Publishing & Media Ltd.

Subject

General Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3