Effective Log-Free Zero Density Estimates for Automorphic L-Functions and the Sato–Tate Conjecture

Author:

Lemke Oliver Robert J1,Thorner Jesse2

Affiliation:

1. Department of Mathematics, Tufts University, Medford, MA

2. Department of Mathematics, Stanford University, Stanford, CA

Abstract

Abstract Let $K/\mathbb{Q}$ be a number field. Let π and π′ be cuspidal automorphic representations of $\textrm{GL}_{d}(\mathbb{A}_{K})$ and $\textrm{GL}_{d^{\prime }}(\mathbb{A}_{K})$. We prove an unconditional and effective log-free zero density estimate for all automorphic L-functions L(s, π) and prove a similar estimate for Rankin–Selberg L-functions L(s, π × π′) when π or π′ satisfies the Ramanujan conjecture. As applications, we make effective Moreno’s analog of Hoheisel’s short interval prime number theorem and extend it to the context of the Sato–Tate conjecture; additionally, we bound the least prime in the Sato–Tate conjecture in analogy with Linnik’s theorem on the least prime in an arithmetic progression. We also prove effective log-free density estimates for automorphic L-functions averaged over twists by Dirichlet characters, which allows us to prove an “average Hoheisel” result for GLdL-functions.

Funder

Division of Mathematical Sciences

Mathematical Sciences Postdoctoral Fellowship

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference56 articles.

1. “A log-free zero-density estimate and small gaps in coefficients of L-functions.”;Akbary;Int. Math. Res. Not.,2015

2. “The Chebotarev density theorem in short intervals and some questions of Serre.”;Balog;J. Number Theory,2001

3. “Twisted symmetric-square L-functions and the nonexistence of Siegel zeros on GL(3).”;Banks;Duke Math. J.,1997

4. “The Sato-Tate conjecture for Hilbert modular forms.;Barnet-Lamb;J. Amer. Math. Soc.,2011

5. “A family of Calabi-Yau varieties and potential automorphy II.”;Barnet-Lamb;Publ. Res. Inst. Math. Sci.,2011

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Log-free zero density estimates for automorphic L-functions;Journal of Number Theory;2024-08

2. A note on Fourier coefficients of Hecke eigenforms in short intervals;Monatshefte für Mathematik;2024-05-29

3. Shimura curves and the abc conjecture;Journal of Number Theory;2024-01

4. A modular analogue of a problem of Vinogradov;The Ramanujan Journal;2022-12-28

5. Towards a _{} variant of the Hoheisel phenomenon;Transactions of the American Mathematical Society;2021-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3