Packing Curves on Surfaces with Few Intersections

Author:

Aougab Tarik1,Biringer Ian2,Gaster Jonah3

Affiliation:

1. Department of Mathematics, Brown University, Providence, RI, USA

2. Department of Mathematics, Boston College, Chestnut Hill, MA, USA

3. Department of Mathematics and Statistics, McGill University, Montreal, QC, CA, Canada

Abstract

Abstract Przytycki has shown that the size $\mathcal{N}_{k}(S)$ of a maximal collection of simple closed curves that pairwise intersect at most $k$ times on a topological surface $S$ grows at most as $|\chi(S)|^{k^{2}+k+1}$. In this article, we narrow Przytycki’s bounds, obtaining \[ \mathcal{N}_{k}(S) =O \left( \frac{ |\chi|^{3k}}{ ( \log |\chi| )^2 } \right)\!. \] In particular, the size of a maximal 1-system grows sub-cubically in $|\chi(S)|$. The proof uses a circle packing argument of Aougab and Souto and a bound for the number of curves of length at most $L$ on a hyperbolic surface. When the genus $g$ is fixed and the number of punctures $n$ grows, we use a different argument to show \[ \mathcal{N}_{k}(S) \leq O(n^{2k+2}). \] This may be improved when $k=2$, and we obtain the sharp estimate $\mathcal{N}_2(S)=\Theta(n^3)$.

Funder

National Science Foundation

CAREER Award

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference9 articles.

1. “Local geometry of the k-curve graph.”;Aougab,;Trans. Amer. Math. Soc.

2. “Counting curve types.”;Aougab,,2016

3. Geometry and Spectra of Compact Riemann Surfaces;Buser.,1992

4. A Primer on Mapping Class Groups

5. “Systems of curves on surfaces.”;Juvan,;J. Combin. Theory Ser. B,1996

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Curves on the torus intersecting at most k times;Mathematical Proceedings of the Cambridge Philosophical Society;2022-11-15

2. Kissing numbers of closed hyperbolic manifolds;American Journal of Mathematics;2022-08

3. 2 -Systems of Arcs on Spheres with Prescribed Endpoints;Michigan Mathematical Journal;2021-01-01

4. Arcs on punctured disks intersecting at most twice with endpoints on the boundary;Groups, Geometry, and Dynamics;2020-11-03

5. Algebraic k-systems of curves;Geometriae Dedicata;2020-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3