On the Period Map for Polarized Hyperkähler Fourfolds

Author:

Debarre Olivier1,Macrì Emanuele2

Affiliation:

1. Université Paris Diderot, École normale supérieure, PSL Research University, CNRS, Département de Mathématiques et Applications, Paris, France

2. Northeastern University, Department of Mathematics, Boston, MA, USA

Abstract

Abstract We study smooth projective hyperkähler fourfolds that are deformations of Hilbert squares of K3 surfaces and are equipped with a polarization of fixed degree and divisibility. They are parametrized by a quasi-projective irreducible 20-dimensional moduli space and Verbitksy’s Torelli theorem implies that their period map is an open embedding. Our main result is that the complement of the image of the period map is a finite union of explicit Heegner divisors that we describe. We also prove that infinitely many Heegner divisors in a given period space have the property that their general points correspond to fourfolds which are isomorphic to Hilbert squares of a K3 surfaces, or to double EPW (Eisenbud–Popescu–Walter) sextics. In two appendices, we determine the groups of biregular or birational automorphisms of various projective hyperkähler fourfolds with Picard number 1 or 2.

Funder

Division of Mathematical Sciences

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Groups Acting on Moduli Spaces of Hyper-Kähler Manifolds;Milan Journal of Mathematics;2024-05-08

2. Geometric description of 〈2〉-polarised Hilbert squares of generic K3 surfaces;Journal of Pure and Applied Algebra;2023-12

3. Density of Noether–Lefschetz loci of polarized irreducible holomorphic symplectic varieties and applications;Kyoto Journal of Mathematics;2023-11-01

4. A special Debarre-Voisin fourfold;Bulletin de la Société mathématique de France;2023-10-19

5. Twisted cubics on cubic fourfolds and stability conditions;Algebraic Geometry;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3