On the Motivic Class of the Classifying Stack of $G_2$ and the Spin Groups

Author:

Pirisi Roberto1,Talpo Mattia2

Affiliation:

1. Department of Mathematics, The University of British Columbia, Vancouver, BC, Canada

2. Department of Mathematics, Simon Fraser University, Burnaby BC, Canada

Funder

University of British Columbia

PIMS

Simon Fraser University

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference26 articles.

1. “The Lie algebra of type G2 is rational over its quotient by the adjoint action.”;Anderson;C. R. Math. Acad. Sci. Paris,2013

2. “On the motivic class of the stack of bundles.”;Behrend;Adv. Math,2007

3. “Motivic classes of some classifying stacks.”;Bergh;J. Lond. Math. Soc. (2),2016

4. “The rationality problem in invariant theory.”;Böhning,2017

5. “Essential dimension, spinor groups, and quadratic forms.”;Brosnan;Ann. of Math. (2),2010

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the mixed Tate property and the motivic class of the classifying stack of a finite group;Algebra & Number Theory;2022-12-31

2. On the motivic class of an algebraic group;Algebra & Number Theory;2020-06-21

3. The Noether Problem for spinor groups of small rank;Journal of Algebra;2020-04

4. The Transition Function of G2 over S6;Symmetry, Integrability and Geometry: Methods and Applications;2019-10-09

5. The motivic class of the classifying stack of the special orthogonal group;Bulletin of the London Mathematical Society;2017-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3