Local Properties of Riesz Minimal Energy Configurations and Equilibrium Measures

Author:

Hardin D P1,Reznikov A2,Saff E B1,Volberg A3

Affiliation:

1. Center for Constructive Approximation, Department of Mathemarics, Vandervilt University, USA

2. Department of Mathematics, Florida State University, USA

3. Department of Mathematics, Michigan State University, USA

Abstract

Abstract We investigate separation properties of $N$-point configurations that minimize discrete Riesz $s$-energy on a compact set $A\subset \mathbb{R}^p$. When $A$ is a smooth $(p-1)$-dimensional manifold without boundary and $s\in [p-2, p-1)$, we prove that the order of separation (as $N\to \infty$) is the best possible. The same conclusions hold for the points that are a fixed positive distance from the boundary of $A$ whenever $A$ is any $p$-dimensional set. These estimates extend a result of Dahlberg for certain smooth $(p-1)$-dimensional surfaces when $s=p-2$ (the harmonic case). Furthermore, we obtain the same separation results for “greedy” $s$-energy points. We deduce our results from an upper regularity property of the $s$-equilibrium measure (i.e., the measure that solves the continuous minimal Riesz $s$-energy problem), and we show that this property holds under a local smoothness assumption on the set $A$.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference24 articles.

1. “Optimal discrete measures for Riesz potentials.”;Borodachov;Trans. Amer. Math. Soc.,2016

2. “Asymptotics of best-packing on rectifiable sets.”;Borodachov;Proc. Amer. Math. Soc.,2007

3. “Riesz external field problems on the hypersphere and optimal point separation.”;Brauchart;Potential Anal.,2014

4. “Removable singularities of continuous harmonic functions in $R^{m}$.”;Carleson;Math. Scand.,1963

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3