Schur $P$-positivity and Involution Stanley Symmetric Functions

Author:

Hamaker Zachary1,Marberg Eric2,Pawlowski Brendan1

Affiliation:

1. Department of Mathematics, University of Michigan, Ann Arbor, MI, USA

2. Department of Mathematics, The Hong Kong University of Science & Technology, Kowloon, Hong Kong

Abstract

Abstract The involution Stanley symmetric functions$\hat{F}_y$ are the stable limits of the analogs of Schubert polynomials for the orbits of the orthogonal group in the flag variety. These symmetric functions are also generating functions for involution words and are indexed by the involutions in the symmetric group. By construction, each $\hat{F}_y$ is a sum of Stanley symmetric functions and therefore Schur positive. We prove the stronger fact that these power series are Schur $P$-positive. We give an algorithm to efficiently compute the decomposition of $\hat{F}_y$ into Schur $P$-summands and prove that this decomposition is triangular with respect to the dominance order on partitions. As an application, we derive pattern avoidance conditions which characterize the involution Stanley symmetric functions which are equal to Schur $P$-functions. We deduce as a corollary that the involution Stanley symmetric function of the reverse permutation is a Schur $P$-function indexed by a shifted staircase shape. These results lead to alternate proofs of theorems of Ardila–Serrano and DeWitt on skew Schur functions which are Schur $P$-functions. We also prove new Pfaffian formulas for certain related involution Schubert polynomials.

Funder

NSF

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference47 articles.

1. “Staircase skew Schur functions are Schur $P$-positive.”;Ardila,;J. Algebraic Combin.,2012

2. “Schubert polynomials for the classical groups.”;Billey,;J. Amer. Math. Soc.,1995

3. “Some combinatorial properties of Schubert polynomials.”;Billey,;J. Algebraic Combin.,1993

4. “The behaviour at infinity of the Bruhat decomposition.”;Brion,;Comment. Math. Helv.,1998

5. “$K$-theory of minuscule varieties.”;Buch,;J. Reine Angew. Math.,2014

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bijecting hidden symmetries for skew staircase shapes;Algebraic Combinatorics;2023-08-29

2. Extending a word property for twisted Coxeter systems;Advances in Applied Mathematics;2023-04

3. Candidate for the crystal B(−∞) for the queer Lie superalgebra;Kyoto Journal of Mathematics;2022-06-01

4. Involutions under Bruhat order and labeled Motzkin paths;European Journal of Combinatorics;2022-06

5. Affine transitions for involution Stanley symmetric functions;European Journal of Combinatorics;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3