Finite Distortion Sobolev Mappings between Manifolds are Continuous

Author:

Goldstein Paweł1,Hajłasz Piotr2,Reza Pakzad Mohammad2

Affiliation:

1. Institute of Mathematics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland

2. Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA, USA

Abstract

Abstract We prove that if $M$ and $N$ are Riemannian, oriented $n$-dimensional manifolds without boundary and additionally $N$ is compact, then Sobolev mappings in $W^{1,n}(M,N)$ of finite distortion are continuous. In particular, $W^{1,n}(M,N)$ mappings with almost everywhere positive Jacobian are continuous. This result has been known since 1976 in the case of mappings in $W^{1,n}(\Omega,{\mathbb R}^n)$, where $\Omega\subset{\mathbb R}^n$ is an open set. The case of mappings between manifolds is much more difficult.

Funder

National Science Centre

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference20 articles.

1. “The approximation problem for Sobolev maps between two manifolds.”;Bethuel;Acta Math.,1991

2. “Quasiregular mappings and cohomology.”;Bonk;Acta Math.,2001

3. “Plateau’s problem and Dirichlet’s principle.”;Courant;Ann. of Math.,1937

4. Measure Theory and Fine Properties of Functions, Revised Edition

5. On regularity of second order Sobolev isometric immersions;Goldstein;preparation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3