Affiliation:
1. School of Mathematics and Statistics, Wuhan University, Wuhan, China
2. School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, China
Abstract
Abstract
Let $(G,K)$ be an irreducible Hermitian symmetric pair of non-compact type with $G={SU}(p,q)$, and let $\lambda$ be an integral weight such that the simple highest weight module $L(\lambda)$ is a Harish-Chandra $({\mathfrak{g}},K)$-module. We give a combinatorial algorithm for the Gelfand–Kirillov (GK) dimension of $L(\lambda)$. This enables us to prove that the GK dimension of $L(\lambda)$ decreases as the integer $\langle{\lambda+\rho},{\beta}^{\vee} \rangle$ increases, where $\rho$ is the half sum of positive roots and $\beta$ is the maximal non-compact root. Finally by the combinatorial algorithm, we obtain a description of the associated variety of $L(\lambda)$.
Funder
National Nature Science Foundation of China
China Postdoctoral Science Foundation
Publisher
Oxford University Press (OUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献