Optimal Curvature Estimates for Homogeneous Ricci Flows

Author:

Böhm Christoph1,Lafuente Ramiro1,Simon Miles2

Affiliation:

1. University of Münster, Einsteinstrasse, Münster, Germany

2. Otto von Guericke University, Magdeburg, IAN, Universitätsplatz, Magdeburg, Germany

Abstract

AbstractWe prove uniform curvature estimates for homogeneous Ricci flows: For a solution defined on $[0,t]$ the norm of the curvature tensor at time $t$ is bounded by the maximum of $C(n)/t$ and $C(n)({\mathrm{scal}}(g(t)) - {\mathrm{scal}}(g(0)) )$. This is used to show that solutions with finite extinction time are Type I, immortal solutions are Type III and ancient solutions are Type I, with constants depending only on the dimension $n$. A further consequence is that a non-collapsed homogeneous ancient solution on a compact homogeneous space emerges from a unique Einstein metric on that space. The above curvature estimates follow from a gap theorem for Ricci-flatness on homogeneous spaces. This theorem is proved by contradiction, using a local $W^{2,p}$ convergence result which holds without symmetry assumptions.

Funder

Alexander von Humboldt Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference69 articles.

1. “The evolution of positively curved invariant Riemannian metrics on the Wallach spaces under the Ricci flow.”;Abiev,;Ann. Global Analy. and Geom,2016

2. “The Ricci flow approach to homogeneous Einstein metrics on flag manifolds.”;Anastassiou,;J. Geom. Phys.,2011

3. “Structure of homogeneous Riemannian spaces with zero Ricci curvature.”;Alekseevski,;Funktional. Anal. i Prilozhen.,1975

4. “Convergence and rigidity of manifolds under Ricci curvature bounds.”;Anderson,;Invent. Math.,1990

5. “$C^{\alpha}$ compactness for manifolds with Ricci curvature and injectivity radius bounded below.”;Anderson,;J. Differential Geom.,1992

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kähler-Ricci flow on rational homogeneous varieties;Journal of Algebra;2023-09

2. Locally Homogeneous $$C^0$$-Riemannian Manifolds;Transformation Groups;2023-06-17

3. The projected homogeneous Ricci flow and its collapses with an application to flag manifolds;Monatshefte für Mathematik;2022-09-10

4. Collapsed ancient solutions of the Ricci flow on compact homogeneous spaces;Proceedings of the London Mathematical Society;2022-08-30

5. On the Ricci flow of homogeneous metrics on spheres;Annals of Global Analysis and Geometry;2022-01-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3