Predicting Sex-Specific Nonfatal Suicide Attempt Risk Using Machine Learning and Data From Danish National Registries

Author:

Gradus Jaimie L,Rosellini Anthony J,Horváth-Puhó Erzsébet,Jiang Tammy,Street Amy E,Galatzer-Levy Isaac,Lash Timothy L,Sørensen Henrik T

Abstract

Abstract Suicide attempts are a leading cause of injury globally. Accurate prediction of suicide attempts might offer opportunities for prevention. This case-cohort study used machine learning to examine sex-specific risk profiles for suicide attempts in Danish nationwide registry data. Cases were all persons who made a nonfatal suicide attempt between 1995 and 2015 (n = 22,974); the subcohort was a 5% random sample of the population at risk on January 1, 1995 (n = 265,183). We developed sex-stratified classification trees and random forests using 1,458 predictors, including demographic factors, family histories, psychiatric and physical health diagnoses, surgery, and prescribed medications. We found that substance use disorders/treatment, prescribed psychiatric medications, previous poisoning diagnoses, and stress disorders were important factors for predicting suicide attempts among men and women. Individuals in the top 5% of predicted risk accounted for 44.7% of all suicide attempts among men and 43.2% of all attempts among women. Our findings illuminate novel risk factors and interactions that are most predictive of nonfatal suicide attempts, while consistency between our findings and previous work in this area adds to the call to move machine learning suicide research toward the examination of high-risk subpopulations.

Funder

National Institute of Mental Health

Lundbeck Foundation

Publisher

Oxford University Press (OUP)

Subject

Epidemiology

Reference80 articles.

1. Suicide and suicidal behavior;Nock;Epidemiol Rev,2008

2. Spinal cord injury due to suicide attempts;Biering-Sørensen;Paraplegia,1992

3. PTSD from a suicide attempt: an empirical investigation among suicide attempt survivors;Stanley;J Clin Psychol,2019

4. Estimating the rates of deaths by suicide among adults who attempt suicide in the United States;Han;J Psychiatr Res,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3